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A B S T R A C T

The rapid digitalization of agriculture has resulted in an unprecedented surge in data collection, necessitating 
this way the privacy protection in innovative data analytics solutions. Federated Learning emerges as a promising 
solution since it allows for collaborative model training across decentralized data sources without sharing raw 
data. This review explores the use of Federated Learning in agriculture, focusing on privacy-preserving methods. 
We thoroughly reviewed a large corpus of relevant research, examining several Federated Learning types and 
their application to agricultural scenarios, such as pest and disease detection, crop yield prediction, and resource 
management. Our findings underscore Federated Learning’s potential to revolutionize privacy-preserving data 
analysis in agriculture by enabling better decision-making through aggregated insights from various farms, while 
retaining data confidentiality. At the same time, a number of technical complications arise, including data 
heterogeneity, communication impediments, and limited computational capabilities in rural areas. Data 
ownership, fairness, and stakeholder trust are significant barriers to widespread use in practice. The present 
study provides research gaps that need to be addressed to fully use the potential of Federated Learning in 
agriculture. Tailoring the design of Federated Learning algorithms and adhering to the nature of agricultural data 
and its peculiarities can promote the enhancement of agriculture-friendly frameworks to ensure privacy- 
preserving mechanisms for agriculture-oriented applications, and the development of frameworks that bear 
ethical issues in mind and facilitate farmers-based equitable benefit distribution. Since Federated Learning can 
potentially change the landscape of data-driven agriculture by allowing collaborative data analytics without 
compromising privacy, it is highly important to overcome the technological and ethical barriers demonstrated in 
this study, maximizing its impact on sustainable farming practices and innovations.

1. Introduction

Due to the increasing digitalization of agriculture, there has been an 
increase in data generation, necessitating advanced analytical tech-
niques that are meant to utilize the available data, while protecting 
sensitive information. Several studies (Haseeb et al., 2020; Huang et al., 
2016; Ongadi, 2024; Rathod & Shinde, 2023) state that the increase of 
data arising from sensors, drones, and satellite images has a lot of po-
tential to enhance yield, resource utilization, and sustainability. Recent 
research has explored fuzzy deep learning and optimization techniques 

to address the challenges of limited and imbalanced datasets in agri-
cultural image analysis, demonstrating high accuracy in tasks, such as 
citrus fruit disease detection (Shah et al., 2024). However, it has been 
stated that there are adverse effects associated with the use of technol-
ogy today in terms of data privacy and security being compromised 
(Jayashankar et al., 2018; Raturi et al., 2022; Runck et al., 2022; Wil-
genbusch et al., 2022). In agricultural science, data sharing is valued as 
it leads to enhanced research, increased productivity, and improved 
sustainability of the industry. This allows scientists to check the accu-
racy of findings, advance science for other purposes, and contribute to 
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the global body of knowledge (Tenopir et al., 2011). Nevertheless, 
Wilgenbusch et al. (2022) argue that there have been concerns about the 
publication of farming data for a number of years, surfacing during the 
1970 s and early 1980 s with the commercialization of biotechnological 
advancements.

In the digital age, data privacy issues have become even more 
complex. Farmers now face challenges related to data asymmetry and 
uncertainties about how Agricultural Technology Providers (ATPs) store 
and use their data (Jayashankar et al., 2018). Additionally, Shepherd 
et al. (2020) highlight that intellectual property rights linked to the 
increasing economic value of data have further heightened the need for 
robust data governance in agriculture, a sentiment echoed by Ashworth 
et al. (2023) as well. Actual events have also shown that agriculture is 
faced with significant privacy concerns. Bergstrom et al. (2022) illus-
trate how the deployment of large unmanned aircraft systems (UAS) in 
agriculture can raise such concerns, thereby underscoring the need for 
secure rural broadband infrastructure. The proliferation of digital agri-
culture platforms and the influx of agriculturally relevant data further 
amplify these privacy and security concerns (Runck et al., 2022). Safe-
guarding sensitive agricultural data is a collective obligation among 
various stakeholders in the agricultural ecosystem, emphasizing the 
need for collaborative efforts to protect farmers’ information (Kaur 
et al., 2022).

Traditional machine learning models usually aggregate data from 
various sources into a central database for training purposes. Although 
effective, this method may also present major threats to privacy and 
security. When sensitive information is collected in one centralized 
location, it becomes susceptible to breaches and abuse. For instance, the 
scenario where someone utilizes a trained model to retrieve sensitive 
information is an inference attack, which is of great concern. Another 
threat presented by this method is that of a single point of failure created 
by the necessity to adhere to a central server, rendering the system 
vulnerable to disruptions and attacks. In light of these issues, Federated 
Learning (FL) is poised as promising direction in machine learning, as it 
resolves the privacy and security aspects of the data by allowing model 
training without using the actual dataset. This approach has received 
considerable popularity, as it allows multiple clients to train a model in a 
decentralized manner and addresses key privacy concerns by allowing 
sensitive data to remain within the borders of the owner. Similar to how 
6G networks are envisioned to leverage pervasive Artificial Intelligence 
(AI) for data-driven machine learning applications in heterogeneous 
networks, FL offers a way to address the privacy and communication 
limitations of traditional centralized machine learning (Hasan et al., 
2024). Instead of sending raw data to a central server, clients send up-
dates about the model based on their local data, which can be combined 
to improve the global model. This decentralized approach is especially 
advantageous in regions like agriculture, where data is sensitive, 
vulnerable, diverse, and dispersed in many locations. Additionally, 
studies that adopt advanced deep neural networks for remote sensing- 
based land use classification (Albarakati et al., 2024) and novel bag-of- 
features methods for infected leaf detection (Vijh et al., 2023) demon-
strate how large-scale agricultural datasets can significantly benefit 
from increased security measures and privacy-preserving approaches 
within machine learning frameworks.

Data in federated learning is protected significantly with secure ag-
gregation, differential privacy, and homomorphic encryption tech-
niques. These security measures can augment even more privacy and 
security (Aledhari et al., 2020; Kairouz et al., 2021; Lim et al., 2020). 
While allowing for efficient and secure model training in a world that is 
becoming more and more data-centric, FL also provides an answer to the 
problem of data centralization.

Several contributions with different methodological approaches 
have been proposed in the literature (Dwarampudi & Yogi, 2024; 
Konečný et al., 2017; C. Ma et al., 2020; Sattler et al., 2019; Shanmugam 
et al., 2023; Z. Sun et al., 2021) in which it is highlighted how FL allows 
training a joint model across multiple companies or agricultural 

organizations while keeping their local data local and promoting 
collaboration and innovation without compromising the confidentiality 
of the data itself. Konečný et al. (2017) describe FL as a machine 
learning environment in which models are trained centrally while 
training data resides on multiple clients with different network char-
acteristics. FL eliminates the need to centralize private information and 
is therefore suitable for privacy-sensitive agricultural applications (C. 
Ma et al., 2020; Sattler et al., 2019; J. Yang et al., 2024). Furthermore, it 
is worth noting that FL addresses data privacy and security concerns by 
ensuring that sensitive information, such as crop yields, soil conditions, 
and agricultural management practices, remains under the control of 
individual farmers or organizations.

Data security and privacy are highly important concerns when 
sharing farmer information for research and decision-making. Wirth 
et al. (2021) emphasize the need for robust data-sharing architectures 
that protect sensitive information while enabling collaboration and 
research. Additionally, Mamba Kabala et al. (2023) demonstrate that FL 
has been applied to enhance agricultural practices, such as image-based 
crop disease detection while ensuring data privacy. As digital technol-
ogy is increasingly adopted in agriculture, FL is not limited to traditional 
machine learning applications. Its versatility extends across various 
sectors, such as innovative healthcare, where AI approaches based on FL 
demonstrate its adaptability (Rahman et al., 2023). Dwarampudi & Yogi 
(2024), He & Zhao (2022), Li et al. (2020), and Sattler et al. (2019)
indicate that FL enables multiple stakeholders in the agricultural 
ecosystem, including farmers, researchers, and technology providers, to 
collaborate and learn from each other without compromising data 
confidentiality. By allowing computations on local devices, FL reduces 
the need to transfer large datasets, improving efficiency and scalability, 
especially in agricultural settings with limited internet connectivity 
(Konečný et al., 2017; Woubie & Bäckström, 2021; J. Xu et al., 2021).

The present paper aims to provide a literature review that in-
corporates a comprehensive analysis of FL’s application in agriculture. It 
examines the range of current FL practices and the challenges specific to 
the agricultural industry, shedding light on how FL can address data 
privacy issues without compromising the rigor of data-driven agricul-
tural decision-making.

1.1. Objectives and research questions

This literature review examines FL’s role in data privacy issues 
relevant to the agricultural sector. By exploring the range of current FL 
practices and the problem characteristics of the agriculture industry, it 
aims to shed light on how FL can allay data privacy issues without 
undermining the rigor implied when making data-backed agricultural 
decisions. It is important to note that farming is becoming increasingly 
data-driven with crop health monitoring, yield forecasting, resource 
utilization, and data analytics to search for cost-effective and environ-
mentally sound solutions, bringing data privacy to the forefront. 
Although in other sectors, such as health care and finance, the potential 
of FL in practice has been investigated to a degree, in agriculture, its 
application has been underexplored. The main contribution of this re-
view is filling the gap in the current literature concerning the application 
of FL to agriculture by examining the adoption of FL in an agricultural 
context. The inquiry in the present paper is framed using the following 
research questions: 

RQ1. How does Federated Learning counter the issue of data privacy?
RQ2. Which Federated Learning approach is most suitable for different 

agricultural applications and why?
RQ3. What are the opportunities and challenges from a technical 

perspective in utilizing Federated Learning frameworks for agri-
cultural settings?
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2. Methodology

The literature search was conducted across three major databases: 
(1) Scopus, (2) Web of Science, and (3) IEEE Xplore (see Fig. 1). These 
databases were selected since they collectively cover a broad spectrum 
of high-impact journals, conference proceedings, and technical reports 
in computer science, engineering, and multidisciplinary research. 
Moreover, Scopus and Web of Science are renowned for their extensive 
indexing of peer-reviewed literature, while IEEE Xplore is a focal source 
for scholarly works in computing and information technology, including 
privacy-preserving machine learning. Although several other databases 
(e.g., ACM Digital Library, ScienceDirect) also contain relevant research, 
we aimed to prevent overlap where possible. Since Scopus often indexes 
many titles from publishers like Elsevier and ACM, plus conference 
publications that also appear on IEEE Xplore, this combination of re-
positories ensures the inclusion of the most relevant studies.

The search strategy was designed to capture the intersection of 

privacy-preserving technologies and FL within the agricultural domain. 
The query strings that were employed for the search were the following: 

• Query1: (“homomorphic encryption” OR “secure multi-party 
computation” OR “differential privacy”) AND “federated learning” 
AND “agriculture”

• Query2: “federated learning” AND “agriculture” AND (“challenges” 
OR “limitations” OR “future directions”)

• Query3: “federated learning” AND (“pest detection” OR “disease 
detection” OR “crop yield prediction” OR “precision agriculture”)

• Query4: (“privacy-preserving” AND “federated learning” AND 
“agriculture”)

The key terms included in these queries (homomorphic encryption, 
secure multi-party computation, and differential privacy) reflect three 
core privacy-preserving technologies commonly employed in FL. 
Meanwhile, keywords like “pest detection,” “disease detection,” and 

Fig. 1. Paper selection and reviewing process used to identify relevant literature.
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“crop yield prediction” were selected to identify specific agricultural 
applications of FL. The publication range that was targeted was between 
January 2014 and August 2024 to include both foundational and recent 
developments in FL and privacy-preserving techniques. Only English- 
language articles (journal and conference) were considered.

Following the database searches, a total of 1,442 articles were 
initially retrieved (see Fig. 1). We proceeded to the removal of duplicate 
articles from the initial list and after 125 duplicates were identified, the 
list was sized down to 1,317 articles. The list was subsequently filtered 
based on article relevance. All titles and abstracts were examined, 
resulting in the exclusion of 460 articles based on titles and 315 based on 
abstracts. This process left 542 articles eligible for a full-text screening. 
At this stage, two additional layers of review were applied: (a) thematic 
inclusion/exclusion and (b) quality assessment. Thematic inclusion was 
applied using the following inclusion/exclusion criteria: 

• The article must explicitly address Federated Learning (FL) methods 
or frameworks.

• The article must clearly focus on agriculture (e.g., pest detection, 
resource optimization, crop yield prediction, precision farming).

• The article must discuss or implement at least one privacy-preserving 
technique (e.g., Homomorphic Encryption, Secure Multi-Party 
Computation, or Differential Privacy).

• Studies purely conceptual with no application details, or papers 
lacking meaningful discussion of privacy or agricultural context were 
excluded.

During the quality assessment, the included articles were examined 
for clear descriptions of the study design, data sources, and evaluation 
metrics, ensuring that each study provided enough detail on how FL was 
implemented, covering algorithmic choices and data handling. Rele-
vance and originality were also assessed by requiring each study to 
address our core research questions, as outlined in Section 1.1, and to 
contribute more than superficial discussions of FL or data privacy.

As a result of this more detailed examination and quality filtering, 
340 papers were excluded, primarily due to insufficient specificity (no 
dedicated privacy-preserving framework) or minimal discussion of 
agricultural use cases. Ultimately, the present study incorporated a total 
of 202 articles into its literature search. The articles in this collection 
provided insights on how privacy preservation techniques are imple-
mented in FL systems for pest and disease detection, crop yield fore-
casting, and operations in precision agriculture. Moreover, through the 
review, the lack of coverage in some aspects was identified and areas for 
potential research on privacy-preserving FL in agriculture were pro-
vided as suggestions. Thus, the present study broadens the scope of 
understanding and encourages further exploration of secure and 
collaborative data mining techniques for agriculture to expedite the 
development of the important sector.

3. Privacy-preserving techniques in federated learning

Data privacy is a prevalent concern in FL, especially in the agricul-
tural sector where farm-sensitive data, such as yield potential and soil 
types, are involved. In this section, we address RQ1 by showcasing how 
FL mitigates data privacy challenges in agriculture through advanced 
techniques. Specifically, we present several measures to ensure agri-
cultural data security in FL scenarios. Three core techniques, Homo-
morphic Encryption (HE), Secure Multi-Party Computation (SMPC), and 
Differential Privacy (DP), are discussed. These techniques represent 
diverse approaches to privacy preservation within FL and are particu-
larly relevant to the agricultural domain due to the sensitivity of the data 
involved. With HE, it is possible to perform calculations on encrypted 
data and complete the analysis while still working with encrypted text, 
maintaining confidentiality throughout the training process. SMPC al-
lows two or more parties to work together without revealing their in-
dividual data inputs to each other or the other parties in a collaborative 

situation. While DP suppresses updates that would result in a high 
change of the overall model functionality such that a single data point 
presence or absence does not materially influence the final functionality 
of the model, the firm changes the parameters by increasing noise. Other 
privacy-preserving strategies include: “Federated Learning with Secure 
Aggregation”, “Private Set Intersection,” and “k-anonymity” but for this 
discussion, HE, SMPC, and DP were selected because of their strengths in 
privacy assurance and their promise in practical segments of FL 
including health care and finance, which are associated with privacy 
risks that are also present in agricultural applications. Moreover, these 
techniques present a range of trade-offs in terms of their privacy pro-
tection, accuracy, and computational cost, which is beneficial for the 
adaptation to the different needs of application in agriculture.

In order to provide the distinctions and uses of the discussed privacy- 
preserving mechanisms in FL, a comparative study matrix is provided in 
Table 1, featuring HE, SMPC, and DP, their basic principles, merits, 
limitations, functional domains in FL, prospects in agriculture, privacy 
level, and computational complexity. These methods are more thor-
oughly described in Sections 3.1-3.3.

3.1. Homomorphic encryption

Homomorphic encryption (HE) has become an effective mechanism 
for enhancing data security in FL as it allows data encryption during 
operations without needing the data to be decrypted. This protects the 
data exchange from being accessed by unauthorized actors during 
training. For example, Pan et al. (2024) proposed FedSHE, which 
enhanced the accuracy, efficiency, and security of FL models through 
adaptive segmented homomorphic encryption, which enabled the ag-
gregation of models without centralizing sensitive information. Like-
wise, Li et al. (2024) also explain how HE can combine updates from 
multiple clients with different keys to allow them to train a model 
together without breaching any user’s privacy. In the context of 
healthcare, Wang et al. (2023) discusses PPFLHE, which employs HE in 
FL to provide security for big data. This guarantees the confidentiality of 
model sharing between users and avoids the risk of privacy leakage 
during training. In another study (Rieyan et al., 2024), the application of 
partial HE in a data fabric architecture that facilitates secure FL-based 
medical image analysis is presented. This also enables healthcare orga-
nizations to jointly build models in a secure environment without 
sharing actual health images, which are sensitive to patients. Further 
enhancing the use of HE in FL, Fan et al. (2022) presented an ID-based 
multi-receiver Homomorphic Proxy Re-Encryption algorithm. This 
method enhances privacy in FL settings with multiple participants, since 
secure model aggregation can be performed on encryption models for 
more than one receiver and vice versa. In the same way, Ma et al. (2022)
advance the MK-CKKS multi-key homomorphic encryption framework 
to safeguard privacy in model updates that are exchanged during FL 
training. This approach guarantees that even when updates to the model 
are combined across clients, the updates have not left the encryption 
level, rendering it as a suitable approach for privacy-preserving FL.

3.2. Secure multi-party computation

Secure Multi-Party Computation (SMPC) is a crucial cryptographic 
protocol that allows different parties to jointly evaluate a function on the 
shareholders’ private inputs, while keeping those inputs concealed from 
each other. In the context of FL, SMPC improves privacy by facilitating 
secure interaction between decentralized actors without sharing sensi-
tive information. Many researchers have sought to determine how 
integrating SMPC with FL is beneficial in different settings. Elfares et al. 
(2024) merge SMPC with FL in their study, focusing on a privacy- 
enhancing training approach (PrivatEyes) that utilizes gaze interactive 
systems to improve privacy. This method guarantees the protection of 
private information even from malicious servers, while achieving 
reasonable accuracy and computation efficiency. Muazu et al. (2024)
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propose a secure FL system that employs SMPC and additive secret 
sharing to secure shape gradient parameters during model updates, 
achieving data privacy and high accuracy.

In distributed machine learning systems context, Yang et al. (2023)
discuss how FL incorporates SMPC to safeguard data security 
throughout the model’s lifecycle. This technique emphasizes privacy 
protection and intellectual property rights by ensuring that sensitive 
information is never exposed during training. Similarly, in the financial 
sector, Arora et al. (2023) have used SMPC to implement privacy- 
preserving FL for financial anomaly detection. This approach allows 
multiple banks to jointly train accurate machine learning models while 
ensuring that customer data remains private. Further enhancements to 
FL with SMPC have been explored in healthcare. For example, Hosseini 
et al. (2022) propose a cluster-based approach where SMPC securely 
shares model weights among hospitals in clusters. This method prevents 
individual hospitals from accessing others’ data while still improving 
overall model accuracy, although it introduces higher communication 
overhead. Another innovative approach, CE-Fed, combines SMPC with 
FL to enable communication-efficient collaborative model training 
among multiple parties (Kanagavelu et al., 2022). This approach im-
proves privacy without compromising communication efficiency. While 
SMPC enhances privacy in FL, it introduces challenges such as increased 
computational complexity and communication overhead. Overcoming 
these challenges is essential for practical applications in agriculture.

3.3. Differential privacy

FL has emerged as a transformative approach in machine learning, 
particularly in sectors such as agriculture, where data privacy is para-
mount. Integrating Differential Privacy (DP) into FL frameworks en-
hances the protection of sensitive data while enabling collaborative 
model training across decentralized data sources. This synthesis explores 
the intersection of FL and differential privacy within the agricultural 
context, highlighting the benefits, challenges, and potential applica-
tions. Initially introduced in 2006, DP offers a mathematical guarantee 
that the output of a data analysis remains nearly indistinguishable, 
regardless of whether any individual’s data is included in the dataset 

(Chen & Liu, 2022; Hardt & Talwar, 2010). This approach addresses 
significant limitations of previous privacy models, such as k-anonymity, 
which can be vulnerable to various forms of re-identification attacks 
(Gotz et al., 2012; Jiang et al., 2018). The key principle of differential 
privacy is the introduction of randomness into the output of queries 
made on a dataset. The Laplace mechanism (Dwork, 2006) often ach-
ieves this by adding noise to the results. According to Al-Hussaeni et al. 
(2018) and Li et al. (2010) the scale of the noise added is determined by 
the query’s sensitivity, which is how much the output changes with the 
addition or removal of a single data point. By adjusting the noise level, 
differential privacy provides a quantifiable trade-off between privacy 
and utility, enabling valuable insights from data while safeguarding 
individual privacy (Liu et al., 2018; Roth & Roughgarden, 2010). When 
combined with differential privacy, FL offers a robust solution for 
maintaining data privacy while enabling collaborative model training 
across different parties. This technique is being explored in various 
domains to enhance privacy and performance.

Wu et al. (2021) proposed a combinatoric approach consisting of 
modeling and DP, which seeks to enhance the efficiency of a multi-party 
collaborative model while reducing messages sent in an efficient way of 
communication. Likewise, LDP-Fed (Truex et al., 2020) employs local 
differential privacy to guarantee formal privacy for model training pa-
rameters, which solves the high dimensionality of large target neural 
network catalogs containing continuous data with fundamental image 
features. In the field of medicine, Adnan et al. (2022) show that differ-
entially private FL is very promising in medical image interpretation of 
histopathology images. Their method provides results at the same level 
as those from conventional training approaches but with strong privacy 
protection. To work with realistic health data, Choudhury et al. (2020)
designed an FL architecture that favors privacy by not allowing the 
movement or dissemination of raw data, using DP techniques as a safety 
measure. In the context of personalized FL, Yang et al. (2023) offer 
FedDPA, which overcomes the disadvantages of non-personalized 
personalization and the problems that arise during the convergence of 
their approach. It uses layer-wise Fisher information to personalize the 
model, increasing its flexibility and adjustable constraint strategies to 
improve convergence and clipping. Further, Sun et al. (2021) introduced 

Table 1 
Comparative analysis of privacy-preserving techniques in FL.

Technique Principle Advantages Disadvantages Applications in FL Potential in 
Agriculture

Privacy 
Level

Computational 
Overhead

HE Allows computations on 
encrypted data without 
needing decryption.

Strong data 
confidentiality

High 
computational 
cost

(Pan et al., 
2024)

Enhances 
efficiency and 
security

Secure 
collaborative 
training on 
encrypted farm data 
Protecting sensitive 
crop data

High High

No raw data 
exposure

Increased latency (B. Wang 
et al., 
2023)

Protects 
healthcare 
data privacy

Secure model 
aggregation

Complex key 
management

(J. Ma 
et al., 
2022)

Prevents 
model update 
leakage

SMPC Computes functions over 
private inputs without 
revealing them to others

No need for a 
trusted 
aggregator

Communication 
overhead

(Elfares 
et al., 
2024)

Enhances gaze 
estimation 
privacy

Collaborative 
optimization of 
resources among 
farms 
Secure sharing of 
soil data

High High

Data remains 
local

Scalability issues (Arora 
et al., 
2023)

Financial 
anomaly 
detection

Collaborative 
model building

Protocol 
complexity

(Hosseini 
et al., 
2022)

Cluster-based 
approach in 
healthcare

DP Introduces noise to data 
or computations to 
prevent disclosure of 
individual data points

Quantifiable 
privacy 
guarantees

Potential loss of 
accuracy

(Wu et al., 
2021)

Adaptive 
gradient 
descent with 
DP

Sharing aggregated 
data insights 
Protecting farm- 
specific practices

Moderate 
to High

Low to Moderate

Balances privacy 
and utility

Noise calibration 
is critical

(Truex 
et al., 
2020)

Provides 
formal privacy 
guarantees

Resistant to 
certain attacks

Complex 
implementation

(Adnan 
et al., 
2022)

Medical image 
analysis
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an innovative approach to enhancing privacy in FL, focusing on 
reducing the recognizability and reusability of sensitive data and 
implementing vertical and horizontal mixups of model updates to ach-
ieve better performance in deep learning, while still attaining high levels 
of privacy. Shi et al. (2021) propose a privacy-preserving approach for 
Hierarchical Federated Learning (HFL). This method ensures order 
preservation for shared model parameters by adding noise via local 
differential privacy before they are sent to the edge and cloud servers. 
This technique has been evaluated on image classification tasks and has 
been shown to perform well regarding privacy protection.

3.4. Leveraging privacy-preserving federated learning for agricultural 
data security

Even though techniques ensuring the users’ privacy have been suc-
cessfully applied in FL contexts in the medical and financial sectors, their 
use in agriculture is underexplored. Farmers hold large volumes of in-
formation that could be classified as sensitive, such as expected yields, 
soil and climatic conditions, that could be greatly benefitted by the use 
of FL systems. Still, it is important to note that there is a lack of research 
emphasizing on the application of HE, SMPC or DP specifically in FL for 
agriculture, providing ample room for more research and development 
in the area. This underscores the need for further exploration and 
development in the field of encryption. HE in FL allows multiple farms 
that possess a machine learning model to collaborate for training using 
encrypted data, while preventing exposure of raw data to each other or 
to a central server. For instance, one related case would be that of 
several farms wanting to devise a predictive model to early identify crop 
diseases using specific soil moisture level, weather conditions and past 
records of disease. Each farm’s data would be encoded via HE so that, 
during the FL process, all computations occur on this encrypted data at a 
local level (i.e., client). The model could potentially predict the out-
breaks of the disease efficiently, while allowing preventive strategies to 
be used by farmers and keeping their sensitive data safe.

Integrating SMPC into agricultural FL frameworks allows multiple 
parties to collaborate securely in developing predictive models or 
analyzing trends while maintaining the confidentiality of their individ-
ual data. Consider a group of farmers that seeks to optimize fertilizer 
application by analyzing soil nutrient data in relation to crop re-
quirements. Incorporating SMPC within a FL framework enables each 
farmer to contribute to a model that forecasts optimal fertilizer appli-
cation rates, while maintaining the confidentiality of their individual 
soil data. This collaboration may result in improved models that increase 
crop yields and minimize environmental impact, benefiting all stake-
holders involved. Such secure collaboration highlights the potential of 
SMPC in boosting both confidentiality and productivity.

The implementation of DP in FL offers a significant opportunity for 
the agricultural sector. Applications may encompass crop yield predic-
tion, pest and disease management, precision agriculture for resource 
optimization, and supply chain optimization for agricultural co-
operatives. Research into FL with DP is essential due to the growing 
digitization of agriculture and the sensitivity of farm data. This approach 
could enable collaborative model development while protecting indi-
vidual farm data. Multiple farms collaborating to enhance pest resis-
tance strategies can utilize DP to ensure that the contributions from each 
farm do not disclose specific information regarding their pest occur-
rences or management practices. This method facilitates the collabora-
tive creation of efficient pest management models while maintaining the 
privacy of each participant.

In conclusion, integrating HE, SMPC, and DP into FL frameworks 
presents considerable potential for the advancement of the agriculture 
sector. Privacy-preserving techniques facilitate secure and collaborative 
data analysis, resulting in enhanced efficiency and sustainability in 
agricultural practices. As FL continues to evolve, adopting these 
methods in agriculture may significantly improve data confidentiality, 
promote collaboration among farmers, and drive innovation in 

agricultural technologies.

4. Federated learning applications in agriculture

Building upon the concepts of FL and the privacy-preserving tech-
niques discussed in Section 3. In this section, we tackle RQ2 by exam-
ining various FL approaches applied to agricultural challenges. we 
provide a comparative analysis of FL applications and models within the 
agricultural sector. By examining specific use cases, such as pest and 
disease detection, crop yield prediction, and precision agriculture, we 
aim to offer insight into how FL tackles specific challenges within the 
agriculture sector through the case studies focusing on pest and disease 
detection, predicting crop yields, and precision farming, while uphold-
ing data privacy principles. This type of analysis not only represents the 
level of progress of FL implementations but also demonstrates areas that 
need further research and development. FL has the advantage of 
fostering collaboration without putting vulnerable nodes at risk, which 
is highly important for the farming industry. In the next sections an 
analysis of the different uses of FL in agriculture is presented and it is 
demonstrated how in some special cases this technology changes agri-
cultural processes.

4.1. Potential pest and disease detection

One of the critical challenges in agriculture is the timely detection of 
pests and diseases, which can significantly impact crop yields and food 
security. FL offers innovative solutions for enhancing pest and disease 
detection systems while preserving data privacy. Table 2 provides a 
comprehensive demonstration of the way in which FL can be used to 
detect pests and diseases in different agricultural crops. Crops like ap-
ples, rice, wheat, bananas, strawberries, and potatoes are included, but 
it should be noted that each one of these crops poses a different chal-
lenge due to their distinct pests and diseases. Deng et al. (2022) high-
light several diseases in apple crops, including anthracnose, bitterpox, 
ring rot, and fruit rust. Similarly, banana crops suffer from diseases such 
as Black Sigatoka, Fusarium Wilt, Banana Bunchy Top Virus, Moko 
disease (Suryavanshi et al., 2024), while in the case of rice crops, bac-
terial leaf blight, blast, brown spot, and tungro pose significant threats 
(Aggarwal et al., 2024). Thapliyal et al. (2024) highlighted the diseases 
of the strawberry leaf, while (Mehta et al., 2023) studied wheat’s 
resistance to several diseases, including Fusarium Head Blight, Stem 
Rust, Leaf Rust, Septoria Leaf Blotch, and Powdery Mildew. Further-
more, potato crops are seriously affected by early and late blight diseases 
(Kamal et al., 2024).

Based on the FL approaches utilized in these studies, a distinction 
may be made between centralized and decentralized systems of FL. 
Centralized approaches are adopted in the work of Deng et al. (2022), 
where a Faster Region Convolutional Neural Network (R-CNN) 
embedded with ResNet-101 and the FedAvg algorithm is a common 
approach in apple pest detection. Moreover, decentralized methods are 
utilized, among others, in Suryavanshi et al. (2024) for banana plants or 
in Thapliyal et al. (2024) for strawberries, where CNN models with FL 
are employed. A centralized federated architecture and decentralized 
methods were also combined in the research by Aggarwal et al. (2024), 
who worked on the problem of rice crop disease detection.

Comparatively, the models used across these studies also included 
Convolutional Neural Networks (CNNs), EfficientNet architectures, and 
the faster R-CNN models. For instance, Efficient Net B03, a 344 layer 
CNN based architecture, was employed by Ahmad et al. (2022) to 
parasitic insects and pests such as beetles, mosquitoes, and aphids in 
various crops. For instance, in this particular case, transfer learning is 
used in the study of Kamal et al. (2024) who worked on cultivating 
potato crops using pre-trained models such as Inception-V3 and VGG16.

The number of images ranges from 4463 in the study of strawberry 
leaf disease by Thapliyal et al. (2024) to 57,849 in the study on banana 
crops (Suryavanshi et al., 2024). This illustrates the scope and depth of 
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complex and scalable machine learning techniques that have been uti-
lized. The performance of these models also differs, the best of which 
was given by Ahmad et al. (2022), with 99.55 % accuracy for pest 
detection using EfficientNet B03. Other studies have also reported high 
accuracy, such as the rice disease detection model (Aggarwal et al., 
2024), achieving an accuracy of 99 % and the strawberry disease 
detection model with 95.49 %-96.91 % (Thapliyal et al., 2024).

The problem of data heterogeneity appears in studies conducted 
across several disciplines, including decentralized systems, specifically 
in the works of Suryavanshi et al. (2024) on bananas and Mehta et al. 
(2023) on wheat crops. Other shortcomings include commitment of 
computational resources and difficulties of real-time detection in 
different environmental conditions (Ahmad et al., 2022). There is also 
concern over the amount of processing power that is needed, especially 
for CNNs (Suryavanshi et al., 2024). Other limitations include commu-
nication overhead and model convergence issues in FL models (Mehta 
et al., 2023).

4.2. Crop yield prediction

Accurate crop yield prediction is vital for planning, marketing, and 
ensuring food security. Traditional centralized models often face chal-
lenges due to data privacy concerns and the heterogeneity of agricul-
tural data. FL provides a framework for collaborative prediction models 

that respect data privacy. This section delves into studies that have 
applied FL to enhance the precision and reliability of crop yield pre-
dictions across different regions and crops. Table 3 provides various 
applications of FL for predicting crop yields. This table demonstrates 
how FL models improve yield forecasts for different crops in terms of 
precision and dependability while maintaining the confidentiality and 
privacy of sensitive agricultural data.

Durrant et al. (2022) and T et al. (2022) studied soybean yield 
forecast using cross-silo and horizontal FL, respectively. Other studies 
employed a variety of FL techniques integrating neural network types 
such as CNN, RNN, and ResNet with the federated average approaches. 
The conclusion has been drawn that it is possible to use FL models 
without sacrificing the performance level, which is typical only for the 
centralized learning approach.

Towards advancing the scope of use of FL beyond soybeans, Q. Zhang 
et al. (2023) investigated maize yield estimation based on federated 
random forest model. Their method involved encrypted features and a 
secure model-sharing approach, which they tested to offer improved 
accuracy and cost efficiency under data-scarce situations. In further 
research, Idoje et al. (2023) shifted the focus to decentralized FL models, 
applying them to the yield estimation of multiple crops, including 
chickpeas, rice, and maize. Their work, in which Gaussian Naive Bayes 
was deployed along with various optimizers, focused on the prospects of 
FL in realizing the accuracy and speed of convergence without the need 

Table 2 
Applications for pest and disease detection in agricultural crops.

Study Crop Type Disease/Pest 
Detected

FL Approach Model Used Technique Dataset 
Size

Model 
Accuracy

Challenges & 
Limitations

(F. Deng 
et al., 
2022)

Apple Various orchard 
pests include apple 
diseases like 
anthracnose, bitter 
pox, ring rot, and 
fruit rust.

Centralized Faster Region 
Convolutional 
Neural Network 
(Faster R-CNN)

R-CNN network is 
enhanced by using 
ResNet-101 with 
FedAvg algorithm 
for FL

15,522 images 
after data 
augmentation

89.34 % Unbalanced and 
insufficient data from 
different orchards, 
diversity of pests and 
diseases, and complex 
detection 
environments

(Ahmad 
et al., 
2022)

Various 
crops

beetle, mosquito, 
aphids, armyworm, 
grasshopper, 
bollworm, stem 
borer, sawfly, and 
mites

Centralized Convolutional 
Neural Network 
(CNN) based on 
EfficientNet B03 
architecture with 
344 layers and 7 
MBConv blocks

FL − EfficientNet 
B03

5400 images 
(600 images per 
class for 9 pest 
classes)

99.55 % Computational 
resource constraints 
and the complexity of 
real-time detection in 
varied environmental 
conditions

(Aggarwal 
et al., 
2024)

Rice bacterial leaf 
blight, blast, brown 
spot, and tungro

Centralized & 
decentralized

EfficientNetB3 Federated Transfer 
Learning

5,932 images 99 % Resource constraints 
on IoAT devices, 
heterogeneous data 
distribution

(Thapliyal 
et al., 
2024)

Strawberry Strawberry Leaf 
Disease

Decentralized CNN FL with 
Convolutional 
Neural Networks 
(CNN)

4663 images 95.49 % 
to 96.91 
%

Data heterogeneity, 
ensuring model 
generalization across 
different 
environments

(Suryavanshi 
et al., 
2024)

Banana Black Sigatoka, 
Fusarium Wilt, 
Banana Bunchy 
Top Virus (BBTV), 
Moko disease, and 
Cigar end rot

Decentralized CNN FL approach 
combined with 
CNN

involved 5 
clients (labeled 
kx_1 to kx_5) −
57,849 samples

0.98 to 
0.99 %

Data heterogeneity 
and the need for high 
computational 
resources for CNNs

(Mehta et al., 
2023)

Wheat Wheat diseases 
include Fusarium 
Head Blight, Stem 
Rust, Leaf Rust, 
Septoria Leaf 
Blotch, Powdery 
Mildew, and Stripe 
Rust.

Decentralized CNN FL with CNNs, 
using federated 
averaging for 
wheat disease 
detection

9,876 images 90.27 % Data heterogeneity, 
communication 
overhead, and 
potential issues with 
model convergence in 
FL.

(Kamal et al., 
2024)

Potato Early Blight & Late 
Blight

Not 
mentioned

Inception-V3 Transfer Learning, 
leveraging pre- 
trained models 
(VGG16, VGG19, 
InceptionV3, 
EfficientNet B1)

Two datasets 
(from 
Bangladesh and 
Pakistan). Not 
mention the 
exact number

88.46 % Data Heterogeneity
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for data.
The above study results further support the growing importance of 

FL technology, especially for agricultural applications, as it can protect 
data, improve the models, and enable unsupervised learning for 
different types of crops. The development of this trend is related to the 
increasing interest in fitting various machine learning algorithms onto 
the FL schema for implementation in agricultural predictive tasks.

4.3. Precision resource management

Precision agriculture aims to optimize resource use and enhance 
agricultural productivity by leveraging detailed field data. However, the 
collection and analysis of such data raise privacy issues. FL enables the 
development of models for resource optimization without compro-
mising individual data ownership. This section explores how FL has been 
applied to various aspects of precision agriculture, including irrigation 
management, energy consumption, and nutrient optimization. Table 4
describes various studies that focus on optimizing resource management 
in precision agriculture utilizing a FL approach. Akbari et al. (2023)
concentrate on the issues of energy efficiency and low age of information 
in active or real-time applications such as monitoring different envi-
ronmental parameters and smart irrigation. With the aid of FL and 
reinforcement learning (Deep Q-Network), their system is capable of 
combining IoT devices and UAVs with mobile edge computing (MEC) 
servers using dispersed UAVs to allow system expansion. The study 
achieved real-time data processing, despite challenges such as virtual 
network functions (VNF) placement, energy efficiency, and real-time 
processing demands.

Other works also stress energy management and security of hetero-
geneous data (Yu et al., 2022; Kumar et al., 2022). Within edge IoT 
systems, Yu et al. (2022) utilize a joint FL and greedy scheduling algo-
rithm to improve the level of precision when predicting crop growth or 
diagnosing pests. Privacy is preserved as there is only the sharing of 
model parameters and intermediate results, although the focus is on 
energy efficiency and not real-time processing to ensure the availability 
of the system across large datasets. On the other hand, Kumar et al. 
(2022) attempted to improve privacy in IoT networks for smart agri-
culture by using a two-tier privacy management system with GRU and 
LSTM-AE models. Their investigation points out several issues including 
the need to maintain not only data security but also introduce real-time 
intrusion detection system while dealing with the problem of compu-
tation and energy.

The remaining studies discuss other aspects of using FL to optimize 
agricultural processes and the distribution of water in urban areas. 
Siniosoglou et al. (2023) present the FL and LSTM models for real-time 
forecasts focusing on animal and crop production. Even though the 
system is scalable and offers real-time insights, communication over-
head and data variability present some of the biggest challenges. Simi-
larly, Elhachmi & Kobbane (2022) offer an irrigation distribution system 
based on FL, with the objective of enhancing water resource 

management. Even though their system can provide the necessary 
ecosystem to promote distributed data processing and scalability across 
many edge nodes, problems regarding synchronization and computa-
tional load still exist. As was noticed in all investigated studies, FL is 
quite effective in resource optimization. At the same time, there is a 
great deal of communication overhead and non-uniform data treatment, 
which needs to be addressed.

5. Challenges and opportunities in implementing federated 
learning in agriculture

Building upon the insights gained from the comparative analysis of 
FL applications and techniques, this section answers RQ3 by presenting 
an in-depth analysis of the technical challenges and opportunities in 
deploying FL solutions in agricultural settings. We delves into the lim-
itations and challenges that currently hinder the widespread adoption of 
FL in agriculture. By acknowledging these technical, social, and ethical 
obstacles, we can better understand the complexities of implementing FL 
and identify avenues for future research to address these critical issues.

5.1. Technical challenges

As it has been emphasized multiple times in the present paper, FL is a 
technique that can potentially ensure privacy in the agricultural domain, 
among others. Nonetheless, its implementation poses various technical 
difficulties that need to be overcome if its full potential in agriculture is 
to be realized. These issues are diverse and include heterogeneity in data 
and concerns for privacy, among others. In Table 5, the technical 
problems prevalent in the implementation of FL in agriculture are pre-
sented, as well as proposed solutions, challenges recognized, and goals 
for the next stages in research. Data heterogeneity, communication ef-
ficiency, model convergence, computational resources, privacy and se-
curity, and scalability, which are included in the challenges summarized 
in the table, are crucial for implementing FL technology in agriculture.

For example, one such cause of data heterogeneity is the nature of 
the data being considered as non-IID, data gathered from different farms 
is unique, like different crops, land size, etc. Due to different data clas-
sifications and methods of collection (Jiang et al., 2020; Wang, 2024; 
Wang, 2022). This obstacle presents a great practical opportunity, as FL 
algorithms can be adapted to deal with such diversity. Future studies 
should aim to develop FL frameworks specific to the agricultural domain 
to address this situation effectively.

Communication efficiency, particularly in villages with insufficient 
bandwidth, is another significant problem in the FL framework. In 
multiple studies, the authors outline the applications of gradient 
compression methods and efficient communication protocols (Konečný 
et al., 2017; Ni et al., 2023; Wang et al., 2023; Yu et al., 2022). Inte-
grated edge computing and developing efficient communication algo-
rithms are mentioned as promising directions towards combatting this 
problem.

Table 3 
Studies that focus on applications for crop yield prediction.

Study Crop Type FL Approach Model Used Techniques Data Privacy Key Benefits Outcomes

(Durrant 
et al., 
2022)

Soybean Cross-silo CNN, RNN, 
FedAvg

FedAvg, Model Sharing Train the model 
locally

Improved 
performance, data 
privacy

Effective, privacy-preserving, 
near-baseline results

(T et al., 
2022)

Soybean Horizontal ResNet-16, 
ResNet-28

Federated Averaging 
with ResNet; compared 
with centralized learning 
(RF, LASSO)

Preserved through 
decentralized model 
training

Data privacy, 
decentralized training, 
improved 
performance

Federated models perform 
comparably to centralized ones 
and are suitable for privacy- 
constrained environments.

(Q. Zhang 
et al., 
2023)

Maize Horizontal Federated 
Random 
Forest

FL with random forest Local data, 
encrypted features, 
secure model

Improved accuracy, 
data privacy, cost- 
effective

Nearly lossless accuracy benefits 
small datasets

(Idoje 
et al., 
2023)

Chickpea, 
Rice, Maize

Decentralized Gaussian 
Naïve Bayes

FL with Gaussian Naïve 
Bayes, SGD, Adam 
optimizers

High − raw data 
remains on edge 
devices

Data privacy, 
accuracy, faster 
convergence

Adam optimizer provides high 
accuracy and privacy
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Table 4 
Studies focusing on applications of precision resource management.

Study Objective Application Area FL Approach Data Sources Privacy Concerns Computational 
Resources

Scalability Real-time 
Capabilities

Resource 
Optimization 
Focus

Challenges

(Akbari 
et al., 
2023)

Minimize 
energy use and 
ensure low AoI 
in real-time 
agriculture 
applications.

Environmental 
monitoring, 
precision farming, 
and smart 
irrigation.

FL and 
reinforcement 
learning (Deep 
Q-Network).

IoT devices in 
agricultural 
fields.

FL to protect local 
data.

UAVs and MEC 
server; optimized 
via NFV.

scalable with 
distributed UAVs; 
challenges in 
resource 
orchestration.

Supports real- 
time monitoring 
with strict AoI 
requirements.

CPU, memory, 
bandwidth, and 
energy 
optimization.

Balancing energy, 
real-time processing, 
and VNF placement.

(Yu et al., 
2022)

Optimize energy 
use in FL for 
Edge-IoAT.

Crop growth 
prediction, pest 
diagnosis, IDC 
prediction in 
soybean crops.

Joint FL with a 
greedy 
scheduling 
algorithm.

Farm edge 
nodes (soil 
moisture, crop 
images) and 
server (satellite 
images).

Only model 
parameters and 
intermediate 
results are shared, 
preserving raw 
data privacy.

Edge nodes (drones, 
iPads) and a central 
server optimized for 
energy efficiency.

Scales well with 
optimized device 
scheduling across 
large farm datasets.

Delay-tolerant, 
focusing on 
energy efficiency 
rather than real- 
time processing.

Energy 
consumption and 
communication 
resource 
(spectrum) 
optimization.

Energy constraints, 
communication 
limits, non-i.i.d. data 
handling.

(Kumar 
et al., 
2022)

Enhance data 
security and 
privacy in smart 
agriculture 
using PEFL.

Intrusion detection 
in smart 
agriculture IoT 
networks

FL, GRU, LSTM- 
AE

IoT sensors and 
ToN-IoT 
dataset.

Two-level privacy: 
perturbation-based 
encoding and 
LSTM-AE 
transformation

Requires strong 
computing power, 
tested on Intel Xeon 
with 128 GB RAM

Scales well with 
large IoT networks 
using edge devices 
and FL

Supports real- 
time intrusion 
detection and 
optimization

Secures and 
efficiently 
processes IoT data

Ensuring data 
privacy, detecting 
intrusions, 
managing 
computational load

(Siniosoglou 
et al., 
2023)

Optimize 
forecasting 
models in smart 
agriculture 
using FL

Animal welfare 
prediction, crop 
production 
optimization

LSTM models 
combined with 
FL

Sensor data 
from stables 
and fields

Data remains local; 
only model updates 
are shared

Moderate; local 
training and 
communication 
required

Highly scalable 
with increased 
nodes; some 
communication 
overhead

Capable of real- 
time forecasting 
and insights

Optimizing crop 
yield and animal 
welfare

Communication 
overhead, non- 
uniform data, 
computational load

(Elhachmi & 
Kobbane, 
2022)

Optimize water 
distribution 
minimize loss 
using FL

Water distribution 
systems, 
optimizing urban 
water supply

Federated 
Averaging 
(FedAvg), Linear 
Regression

Sensor data 
from water 
distribution 
networks

Data stays 
decentralized; only 
model parameters 
are shared

Local computation 
at gateways; central 
server for model 
aggregation

Scales across 
multiple edge 
devices (gateways)

Potential for near 
real-time 
updates; not 
explicitly 
detailed

Water resources, 
reducing waste, and 
optimizing 
distribution

Data heterogeneity, 
synchronization, 
computational load 
on devices
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Another issue that emerged in the literature was the slow conver-
gence of FL models arising out of data and system heterogeneities (Li 
et al., 2021; Rana et al., 2023; Wang et al., 2023). To address this, hi-
erarchical FL models and adaptive optimization methodologies have 
been proposed. Table 5 outlines future directions for personalized FL 
solutions in farms to achieve better FL model convergence in various 
agricultural settings.

From a technical standpoint, IoT devices often face constraints 
related to cost, energy, and limited computational resources, which can 
impede their performance and security. To address these challenges, 
Kumar et al. (2022) leveraged a deep privacy-encoding-based FL 
approach, enhancing data security without imposing significant hard-
ware demands. Building on this, Ni et al. (2023) integrated centralized 
and federated paradigms to manage imbalanced data and device di-
versity in large-scale IoT networks, thereby improving scalability and 
resource utilization. Towards further refining FL frameworks for 
resource-constrained environments, Park & Lee (2022) introduce rate- 
splitting transmission alongside optimized training parameters and 
fronthaul quantization, significantly reducing model training time and 
enhancing efficiency for agricultural IoT devices. Furthermore, Zhang 
et al. (2021) present the FedIoT platform and FedDetect algorithm, 
which facilitate on-device anomaly detection and utilize adaptive opti-
mization techniques to minimize communication and storage overhead, 
ensuring effective learning processes even with limited computational 
and energy resources. These studies provide scaffolding to overcome the 
hardware and data challenges in deploying FL for agricultural IoT sys-
tems, ensuring improved performance, security, and operational 
efficiency.

Privacy and security need to be protected in any situation that in-
volves sensitive data, including farms. Multiple studies suggest the use of 
techniques such as differential privacy, secure multi-party computation, 
and blockchain to solve this problem (Kumar et al., 2022; Reisizadeh 
et al., 2020; Zhu et al., 2023). While the presented future challenges are 
based on practical realizations, quantum-resistant encryption and su-
perior privacy mechanism design are emphasized in terms of future 
research efforts for long-term data protection.

Finally, scalability is a challenge stemmed from the large number of 
diverse devices in agricultural networks. Strategies such as device 
scheduling and semi-FL approaches could be potential alternatives, and 
deploying them on a large farm infrastructure, even without increasing 
FL capacity, presents an opportunity to develop suitable architecture for 
agricultural (IoT) systems (Ni et al., 2023; Yu et al., 2022).

5.2. Social and ethical challenges

Many technical challenges in implementing FL in agriculture have 

some social and ethical concerns as well. Ethical and social problems 
surrounding data privacy, farmer autonomy, and the broader social 
impacts of advanced agricultural technology complicate this matter 
further. Table 6 shows major ethical and social issues related to FL in 
agriculture, their ramifications, and how they can be addressed. These 
problems are complicated and need a multi-faceted approach provided 
in this comprehensive overview to guide all the individuals involved.

In the first row of Table 6, the focus is on data ownership and 
approval. Raturi et al. (2022) and Wilgenbusch et al. (2022) emphasize 
concerns regarding data ownership that may deter farmers from col-
lecting agricultural data via FL systems. Well-defined consent re-
quirements and fair usage policies, which will enhance trust and 
openness, could potentially mitigate this issue. Xu et al. (2019) highlight 
that while FL allows participants to collaborate on model training 
without sharing their actual data, which is crucial for maintaining data 
ownership and privacy, existing methods often lead to significant 
communication overhead and slower training times. This trade-off can 
deter adoption in agriculture, where efficiency and timely data pro-
cessing are vital. Dwarampudi & Yogi (2024) further discuss how FL 
addresses data ownership and privacy concerns in agriculture by 
enabling collaborative model training across decentralized data sources. 
This approach allows farmers to share their data for machine learning 
purposes without risking their privacy, thus facilitating the adoption of 
FL in the agricultural sector.

Furthermore, Table 6 signifies focus on the issues of equitable access 
(e.g., access to FL models by minority or fragmentation farms and their 
inclusion in modeling). The works of Macaulay & Butsic (2017) and 
Raturi et al. (2022) provide an example of such problems when FL 
models are designed without minimizing risks, benefiting mostly larger 
and more technologically mature farms. To rectify this, it is sufficient to 
apply approaches ensuring representative sampling from various cate-
gories of farms.

Another pressing issue is the digital divide as well as accessibility in 
important societies. Bergstrom et al. (2022) and Ongadi (2024) devel-
oped a case that underscores how FL could create an imbalance in the 
farms that are technologically advanced and those that operate using 
more conventional means. Limited access to computers and to network 
connectivity in the non-urban areas – a common problem in many 
countries − is a critical issue. Measures must be put to curb these in-
equalities to avoid the small or low-end-technology farms being 
sidelined.

Equally important are issues of privacy and trust, as there is a need to 
avoid too much sharing of data that can disadvantage farmers versus the 
need for data sharing in agriculture (Jayashankar et al., 2018; Kaur 
et al., 2022). FL offers a solution by enabling local data processing and 
only sharing model updates, thereby addressing privacy concerns (Lim 

Table 5 
Technical challenges in the implementation of FL in agriculture.

Studies Description Possible Solutions Challenges Future Directions

(D. Jiang et al., 2020; S. Wang, 
2024; X. Wang, 2022)

Non-IID data across farms, diverse 
data types, and collection 
methods

Adaptive FL algorithms, robust 
algorithms for handling diverse 
data

Data Heterogeneity Develop domain-specific FL models for 
agriculture

(Konečný et al., 2017; Ni et al., 
2023; Y. Wang et al., 2023; 
Yu et al., 2022)

Limited bandwidth in rural areas, 
high communication overhead

Gradient compression, efficient 
aggregation methods, 
lightweight FL models

Communication 
Efficiency

Edge computing integration, development of 
communication-efficient FL algorithms

(Q. Li et al., 2021; Rana et al., 
2023; Y. Wang et al., 2023)

Slow convergence due to data 
diversity and system 
heterogeneity

Hierarchical FL, adaptive 
optimization techniques

Model 
Convergence

Personalized FL for farm-specific models, 
development of convergence-guaranteeing 
algorithms

(Kumar et al., 2022; Ni et al., 
2023; Park & Lee, 2022; T. 
Zhang et al., 2021)

Limited processing power of 
agricultural IoT devices

Lightweight FL models, efficient 
training algorithms

Computational 
Resources

Hardware-software co-design for agricultural 
IoT, development of resource-aware FL 
frameworks

(Kumar et al., 2022; 
Reisizadeh et al., 2020; Zhu 
et al., 2023)

Protecting sensitive farm data, 
ensuring data confidentiality

Differential privacy, secure 
aggregation, blockchain 
integration

Privacy and 
Security

Quantum-resistant cryptography for long-term 
security, advanced privacy-preserving 
techniques tailored for agricultural data

(Ni et al., 2023; Yu et al., 
2022)

Challenges in scaling FL across 
numerous heterogeneous 
agricultural devices

Efficient device scheduling, 
semi-FL approaches

Scalability Development of scalable FL architectures for 
large-scale agricultural IoT networks
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et al., 2020). Additionally, implementing robust privacy-preserving al-
gorithms helps prevent information leakage from model parameters, 
fostering trust among agricultural stakeholders (Mugunthan et al., 
2020). These privacy-preserving approaches and trust-building mea-
sures are essential for tackling the challenges of data sharing faced by 
farmers.

Such FL models are usually looked down upon as “black box” models 
which lack transparency (Ashworth et al., 2023). Trust in researchers’ 
results may be undermined among farmers and decision-makers due to 
the absence of the models’ ease of understanding in result interpreta-
tion. Hence it becomes important to develop strategies that will improve 
the details in terms of explainability in order to ensure confidence in 
such practices.

From an environmental perspective, Bongiovanni & Lowenberg- 
Deboer (2004) elaborated on how FL has environmental and sustain-
ability consequences bearing in mind the likely ramifications on energy 
use trends from implementing FL. Reconciling the promises of data- 
centric agriculture with sustainability principles is crucial since unbri-
dled escalation of computational power may have adverse effects on the 
ecosystem.

Some ethical issues also emerge from the use of aggregated data. For 
instance, Ashworth et al. (2023) mentioned issues of unfair advantages 
on the market or even exploitations. Oversight principles must be 
created to ensure that the information gained from FL is not misused.

Lastly, Table 6 provides the regulatory and legal challenges, noting 
that FL implementations must navigate complex data protection regu-
lations across various jurisdictions (Wilgenbusch et al., 2022). Devel-
oping industry standards and best practices that align with the relevant 
legal frameworks can address compliance issues.

6. Discussion and future work

Considering the identified technical, social, and ethical challenges, 
future research must focus on developing solutions that address these 
barriers. In this section, we discuss potential research directions that can 
advance the field of FL in agriculture, including algorithmic innovations, 
privacy-preserving techniques, and collaborative frameworks that pro-
mote equitable benefit-sharing. The study of current literature on FL in 
agriculture has revealed several promising areas for further research. 
Designing customized FL algorithms specific to the peculiarities 
inherent in agricultural data such as seasonal variations, geographical 
diversity, and multi-modal data types has been described as highly 

important (Jiang et al., 2020; Wang, 2024). Li et al. (2021) and Wang 
(2022) emphasize that more research is needed to improve model per-
formance on non-independent and identically distributed (non-IID) 
data, which is often observed in farming systems due to differences in 
farming practices, soil conditions, and climate across different regions. 
Given the unique nature of farm-specific information and its economic 
implications if leaked, Kumar et al. (2022) and Zhu et al. (2023) assert 
that it is mandatory to investigate and develop sophisticated privacy- 
preserving techniques applicable to agricultural data.

Ni et al. (2023) and Yu et al. (2022) highlight that future research 
should investigate methods to improve the scalability and efficiency of 
FL systems used in rural areas with limited computational resources and 
network connectivity. Kamilaris & Prenafeta-Boldú (2018) suggest that 
integrating FL with edge computing technologies is a promising research 
direction to enable real-time decision-making and reduce latency in 
agricultural IoT applications. Additionally, Konečný et al. (2017)
emphasize the importance of determining whether cross-silo FL can 
promote collaboration between different agricultural organizations 
without compromising data privacy. To ensure the trust and adoption of 
AI-driven agricultural technologies by farmers, Kairouz et al. (2021) and 
Li et al. (2020) stress the need for interpretable FL models that offer 
insights into decision processes. Li et al. (2020) indicate that there is 
significant potential in utilizing knowledge from data-rich areas in 
agriculture to enhance the performance of models in less data-abundant 
regions through federated transfer learning. Furthermore, Zhu et al. 
(2023) suggest combining blockchain technologies with FL, which 
warrants further research to ensure reliability and transparency when 
sharing agricultural data.

Deng et al. (2020) and Li et al. (2022) point out that developing 
adaptive FL approaches capable of handling the dynamic nature of 
agricultural environments, including seasonal changes and long-term 
climate trends, is an important area for future research. Future work 
should prioritize several key areas to fully realize the potential of FL in 
agriculture. One crucial direction is developing robust FL frameworks 
capable of handling the heterogeneous nature of agricultural data. This 
involves investigating meta-learning techniques to train adaptable 
global models and incorporating transfer learning to leverage pre- 
trained models for related agricultural tasks. Performance evaluation 
should consider accuracy, communication efficiency, and robustness to 
distribution shifts. Simultaneously, enhancing privacy preservation is 
paramount. Exploring advanced privacy-enhancing technologies (PETs) 
like homomorphic encryption and secure multi-party computation is 

Table 6 
Social and ethical challenges for implementing FL for agriculture.

Studies Description Implications Challenges Potential Mitigation Strategies

(Dwarampudi & Yogi, 2024; 
Raturi et al., 2022; Wilgenbusch 
et al., 2022; R. Xu et al., 2019)

Concerns about who owns agricultural 
data collected through FL systems

Farmers may be hesitant to 
participate in FL networks

Data Ownership and 
Consent

Develop precise consent mechanisms 
and data ownership policies

(Macaulay & Butsic, 2017; Raturi 
et al., 2022)

Ensuring smaller farms and 
underrepresented practices are fairly 
represented in FL models.

Potential bias in model 
outcomes favoring larger 
farms

Fair Representation and 
Equity

Implement techniques to balance data 
representation across different farm 
types and sizes.

(Bergstrom et al., 2022; Ongadi, 
2024)

Potential exacerbation of the gap 
between technologically advanced and 
traditional farming practices

Unequal access to benefits of 
FL in agriculture

Digital Divide and 
Accessibility

Develop strategies to overcome limited 
computational resources and network 
connectivity in rural areas.

(Jayashankar et al., 2018; Kaur 
et al., 2022; Lim et al., 2020; 
Mugunthan et al., 2020)

Balancing data sharing needs with 
farmers’ privacy concerns

Reluctance to share 
sensitive agricultural data

Privacy and Trust Implement robust privacy-preserving 
techniques and build trust through 
transparency.

(Ashworth et al., 2023) Making FL models interpretable for 
farmers and policymakers

Lack of trust in “black box” 
FL models

Transparency and 
Explainability

Develop methods to make FL models 
more explainable and transparent

(Bongiovanni & Lowenberg- 
Deboer, 2004)

Considering the environmental impact 
of increased computational demands

Potential increase in energy 
consumption

Environmental and 
Sustainability 
Implications

Balance the benefits of data-driven 
agriculture with sustainability 
concerns.

(Ashworth et al., 2023) Ensuring responsible use of aggregated 
insights

Potential for unfair market 
advantages or exploitation

Ethical Use of 
Agricultural Data

Develop ethical frameworks for data 
use in agricultural FL

(Wilgenbusch et al., 2022) Navigating complex data protection 
regulations

Compliance issues in 
implementing FL across 
different jurisdictions

Regulatory and Legal 
Challenges

Develop industry standards and best 
practices aligned with relevant laws 
and regulations.
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crucial for developing secure aggregation protocols that prevent data 
leakage during model training. Research should evaluate the trade-off 
between privacy guarantees and model performance using different 
privacy budgets, while also analyzing the suitability of various PETs for 
diverse agricultural applications. Furthermore, designing efficient and 
scalable FL systems for resource-constrained agricultural environments 
is essential. This necessitates developing lightweight FL frameworks that 
operate efficiently on edge devices, investigating model compression 
techniques, and exploring integration with edge and fog computing ar-
chitectures to optimize resource utilization and reduce latency. The 
development of a blockchain-based framework for secure and trans-
parent data sharing is another promising avenue. This involves 
designing permissioned blockchain networks to record data contribu-
tions and model updates, implementing smart contracts for data sharing 
agreements, and investigating zero-knowledge proofs for verifiable data 
integrity. Finally, enhancing the interpretability and explainability of FL 
models for agricultural applications is crucial for building trust and 
acceptance among farmers. This requires investigating explainable AI 
(XAI) techniques, developing visualization methods for feature contri-
butions, and focusing on generating understandable and actionable ex-
planations for non-technical users.

By addressing these research directions, future studies can contribute 
to the advancement of FL in agriculture, resulting in more efficient, 
secure, and privacy-preserving data analysis and decision-making in the 
agricultural sector. In summary, while FL presents transformative op-
portunities for agriculture, it is accompanied by a set of complex chal-
lenges that require comprehensive solutions. The concerted efforts to 
address these limitations will not only enhance the applicability of FL 
but also contribute to the broader goal of sustainable and equitable 
agricultural practices.

7. Conclusion

In the present work, we have investigated the emerging subject of FL 
and how it can transform agriculture, especially regarding privacy- 
protecting data analytics and anonymization methods. We found that 
FL is an efficient way to handle sensitive agricultural data, an indis-
pensable feature in today’s data-driven agriculture, where data sharing 
is essential for optimizing yields, managing resources, and ensuring 
sustainable practices. Toward this end, we have explored three main 
types of FL: horizontal, vertical, and federated transfer learning, high-
lighting their respective advantages in a range of agricultural scenarios. 
We have also surveyed various applications of FL in agriculture, 
including pest and disease detection, precision farming, resource opti-
mization, and crop yield prediction, illustrating FL’s practical benefits 
for improving farming methods while maintaining data privacy.

The present review highlights several challenges in implementing FL 
in agriculture. These include technical hurdles such as heterogeneous 
data, limited computational resources, and bandwidth constraints, 
especially in rural areas, as well as broader social and ethical challenges 
like data ownership, equitable access to technology, and fairness in 
model outputs. Despite these complications, FL has significant potential 
for advancing agricultural innovation by fostering stronger collabora-
tion among farmers, researchers, and other stakeholders while safe-
guarding confidential data. The ongoing development of more robust 
privacy-preserving techniques, aligned with user-friendly FL frame-
works, will further enable data-driven agriculture to reach its full 
potential.

Future work should focus on developing more specialized FL algo-
rithms tailored to agricultural data, improving privacy-preserving 
mechanisms, and tackling social and ethical concerns for equitable 
technology distribution. Further integration of FL with edge computing 
and blockchain technology could also facilitate broader deployment and 
enhance trust, transparency, and operational efficiency across the in-
dustry. In short, FL heralds a transformative shift in agricultural data 
analysis by making collaborative learning possible while preserving 

individual data privacy. By overcoming present limitations and 
encouraging responsible innovation, FL can help farmers, researchers, 
and policymakers fully unlock the power of data-centric agriculture for a 
more sustainable future.
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